A Problem Solving Environment for Stochastic Biological Simulations
نویسندگان
چکیده
Stochastic simulations of biological systems vary widely in scope from reaction modules, to single cells, to cell colonies. While the same techniques for sampling the stochastic equations governing cellular processes apply to all these systems, the setup of the simulation volume and initial state for the simulations differ significantly. Lattice Microbes is a GPU accelerated stochastic biological problem solving environment with a general interface that meets the diverse requirements of these types of biological simulations. The software includes a Python interface that allows facile customization of the simulation setup and on-the-fly modification of the simulation state with access to highly optimized, compiled algorithms for solving the stochastic equations. Here we describe the interface to Lattice Microbes and present several examples of very different simulations that were rapidly prototyped in Python. Two examples show standard stochastic biochemical problems. As an example of the true utility of the Python interface, the highly optimized method for sampling the reaction-diffusion master equation in Lattice Microbes is coupled to the COBRA toolbox, a Python package that solves a linear programming problem representing the steady-state reaction flux through the full metabolic model of the cell. This final example shows how the Python interface allows the GPU optimized code to be used to interface with other methods.
منابع مشابه
Stochastic Decision Making in Manufacturing Environments
Decision making plays an important role in economics, psychology, philosophy, mathematics, statistics and many other fields. In each field, decision making consists of identifying the values, uncertainties and other issues that define the decision. In any field, the nature of the decisions is affected by environmental characteristics. In this paper, we are considered the production planning pro...
متن کاملA Benders\' Decomposition Based Solution Method for Solving User Equilibrium Problem: Deterministic and Stochastic Cases
The traffic assignment problem is one of the most important problems for analyzing and optimizing the transportation network to find optimal flows. This study presented a new formulation based on a generalized Benders' decomposition approach to solve its important part, i.e. user equilibrium problems, in deterministic and stochastic cases. The new approach decomposed the problem into a master p...
متن کاملWilson wavelets for solving nonlinear stochastic integral equations
A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...
متن کاملReconfiguration of Supply Chain: A Two Stage Stochastic Programming
In this paper, we propose an extended relocation model for warehouses configuration in a supply chain network, in which uncertainty is associated to operational costs, production capacity and demands whereas, existing researches in this area are often restricted to deterministic environments. In real cases, we usually deal with stochastic parameters and this point justifies why the relocation m...
متن کاملA Combined Stochastic Programming and Robust Optimization Approach for Location-Routing Problem and Solving it via Variable Neighborhood Search algorithm
The location-routing problem is one of the combined problems in the area of supply chain management that simultaneously make decisions related to location of depots and routing of the vehicles. In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013